Solutionbank C1

Edexcel Modular Mathematics for AS and A-Level
Algebraic fractions
Exercise A, Question 1
Question:
The line L has equation $y=5-2 x$.
(a) Show that the point $P(3,-1)$ lies on L.
(b) Find an equation of the line, perpendicular to L, which passes through P. Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Solution:

(a)

For $x=3$,
$y=5-(2 \times 3)=5-6=-1$

So (3, - 1) lies on L.
(b)
$y=-2 x+5$
Gradient of L is -2 .

Perpendicular to L,
gradient is $\frac{1}{2}$
$\left.\frac{1}{2} \times-2=-1\right)$
is $-\frac{1}{m}$
Compare with
the gradient m

Substitute $x=3$
into the equation of L.
Give a conclusion.
$y=m x+c$ to find
For a perpendicular
line, the gradient

Use $y-y_{1}=m$
$\left(x-x_{1}\right)$
Multiply by 2

This is the required
form $a x+b y+c=0$,
where a, b and c are integers.

Solutionbank C1

Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions
Exercise A, Question 2
Question:
The points A and B have coordinates $(-2,1)$ and $(5,2)$ respectively.
(a) Find, in its simplest surd form, the length $A B$.
(b) Find an equation of the line through A and B, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

The line through A and B meets the y-axis at the point C.
(c) Find the coordinates of C.

Solution:

(a)

A: ($-2,1$), B (5,2)
AB

$$
\begin{align*}
& =\sqrt{(5-(-2))^{2}+(2-1)^{2}} \\
& =\sqrt{\left(7^{2}+1^{2}\right)}=\sqrt{50} \tag{2}
\end{align*}
$$

(Pythagoras's

$\sqrt{50}$

Theorem)

AB

$$
=\sqrt{(25 \times 2)}=5 \sqrt{2}
$$

(b)

$$
\begin{array}{ll}
m=\frac{2-1}{5-(-2)}=\frac{1}{7} \quad & \text { Find the gradient } \\
\text { of the line, using } \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{array}
$$

two points is
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)}$

$$
\text { Use } \sqrt{(a b)}=\sqrt{a} \sqrt{b}
$$ Use $\sqrt{(a b)}=\sqrt{a} \sqrt{b}$

$$
\begin{array}{ll}
y-1 & =\frac{1}{7}(x-(-2)) \\
y-1 & =\frac{1}{7} x+\frac{2}{7} \\
7 y-7 & =x+2 \\
0 & =x-7 y+9 \\
x-7 y+9 & =0 \\
(a=1 \quad b=-7, c=9) &
\end{array}
$$

$$
(a=1, b=-7, c=9) \quad \text { where } a, b \text { and } c
$$ are integers.

$\left(x-x_{1}\right)$
(c)
$x=0$:
Use $x=0$ to find
$0-7 y+9=0$
$9=7 y$
$y=\frac{9}{7} \quad$ or $\quad y=1 \frac{2}{7}$
C is the point $\left(0,1 \frac{2}{7}\right)$
© Pearson Education Ltd 2008

Use $y-y_{1}=m$

Multiply by 7

This is the required form $a x+b y+c=0$,
where the line meets the y-axis.

Solutionbank C1

Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions
Exercise A, Question 3
Question:
The line l_{1} passes through the point $(9,-4)$ and has gradient $\frac{1}{3}$
(a) Find an equation for l_{1} in the form $a x+b y+c=0$, where a, b and c are integers.

The line l_{2} passes through the origin O and has gradient -2 . The lines l_{1} and l_{2} intersect at the point P.
(b) Calculate the coordinates of P.

Given that l_{1} crosses the y-axis at the point C,
(c) calculate the exact area of $\triangle O C P$

Solution:

(a)

$$
\begin{array}{ll}
y-(-4) & =\frac{1}{3}(x-9) \\
y+4 & =\frac{1}{3}(x-9) \\
y+4 & =\frac{1}{3} x-3 \\
3 y+12 & =x-9 \\
0 & =x-3 y-21 \\
x-3 y-21 & =0 \\
(a=1, b=-3, c=-21) &
\end{array}
$$

(b)

Equation of $l_{2}: y=-2 x$
is $y=m x$.
$l_{1}: \quad x-3 y-21$
$=0$
$x-3(-2 x)-21=0$
$x+6 x-21=0$
$7 x \quad=21$
$x \quad=3$
$y=-2 \times 3=-6$

Coordinates of P :
($3,-6$)
(c)

Use a rough sketch to show the given information

Substitute back
into $y=-2 x$
form $a x+b y+c=0$,
where a, b and c
are integers.
$\left(x-x_{1}\right)$

Multiply by 3

This is the
required
Use $y-y_{1}=m$

The equation of a straight line through the origin

Substitute $y=-2 x$ into the equation of l_{1}

Be careful not to make any wrong assumptions. Here, for example, $\angle \mathrm{OPC}$ is not 90°

Use OC as the base and PN as the perpendicular height

Where l_{1} meets the y-axis, $x=0$.

$0-3 y-21$	$=0$
$3 y$	$=-21$
y	$=-7$
So OC $=7$ and PN $=3$	

Put $x=0$ in the equation of l_{1}

The distance of P from the y-axis is the same as its x-coordinate

Area of Δ OCP

$$
\begin{aligned}
& =\frac{1}{2}(\text { base } \times \text { height }) \\
& =\frac{1}{2}(7 \times 3) \\
& =10 \frac{1}{2}
\end{aligned}
$$

© Pearson Education Ltd 2008

Solutionbank C1

Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 4
Question:

The points $A(1,7), B(20,7)$ and $C(p, q)$ form the vertices of a triangle $A B C$, as shown in the figure. The point $D(8,2)$ is the mid-point of $A C$.
(a) Find the value of p and the value of q.

The line l, which passes through D and is perpendicular to $A C$, intersects $A B$ at E.
(b) Find an equation for l, in the form $a x+b y+c=0$, where a, b and c are integers.
(c) Find the exact x-coordinate of E.

Solution:

(a)

$$
\begin{aligned}
& \left(\frac{1+p}{2},\right. \\
& \left.\frac{7+q}{2}\right)
\end{aligned}=(8,2)
$$

	$\left(x_{2}, y_{2}\right)$
$\frac{1+p}{2}$	$=8$
$1+p$	$=16$
p	$=15$
$\frac{7+q}{2}$	$=2$
$7+q$	$=4$
q	$=-3$

$\left(\frac{x_{1}+x_{2}}{2}\right.$,
$\left.\frac{y_{1}+y_{2}}{2}\right)$
is the mid-point of the line from
$\left(x_{1}, y_{1}\right)$ to
\square
Equate the x coordinates

Equate the y coordinates
(b)

Gradient of AC :
$m=\frac{2-7}{8-1}=\frac{-5}{7}$

AD) .
Gradient of l is

$$
-\frac{1}{\left(\frac{-5}{7}\right)}
$$

$y-2$

$$
=\frac{7}{5}(x-8)
$$

$y-2$

$$
=\frac{7 x}{5}-\frac{56}{5}
$$

$5 y-10$
$0 \quad=7 x-5 y-46$

$$
\left(x-x_{1}\right)
$$

$$
=7 x-56
$$

$$
=7 x-5 y-46
$$

$7 x-5 y-46$

$$
=0
$$

$(a=7, b=-5, c=-46)$

Use the points A
and D, with
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$,
to find the gradient
of AC (or
For a perpendicular
line, the gradient
is $-\frac{1}{m}$
through $D(8,2)$
use this point in
$y-y_{1}=m$
line l passes
The

Multiply
by 5

This is

Substitute $y=7$ into

Solutionbank C1

Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 5
Question:
The straight line l_{1} has equation $y=3 x-6$.

The straight line l_{2} is perpendicular to l_{1} and passes through the point $(6,2)$.
(a) Find an equation for l_{2} in the form $y=m x+c$, where m and c are constants.

The lines l_{1} and l_{2} intersect at the point C.
(b) Use algebra to find the coordinates of C.

The lines l_{1} and l_{2} cross the x-axis at the point A and B respectively.
(c) Calculate the exact area of triangle $A B C$.

Solution:

(a)

The gradient Compare
of l_{1} is 3 . with $y=m x+c$.
So the gradient
of l_{2} is $-\frac{1}{3}$
For a perpendicular
line, the gradient
is $-\frac{1}{m}$
Eqn. of l_{2} :

$y-2$	$=-\frac{1}{3}(x-6)$	
$y-2$	$=-\frac{1}{3} x+2$	$\left(x-x_{1}\right)$
y	$=-\frac{1}{3} x+4$	Use $y-y_{1}=m$

(b)

y	$=3 x-6$	equations	Solve these
y	$=-\frac{1}{3} x+4$		simultaneously
$3 x-6$	$=-\frac{1}{3} x+4$		
$3 x+\frac{1}{3} x$	$=4+6$		
$\frac{10}{3} x$	$=10$	by 3 and	Multiply
x	$=3$		divide by 10

$y=$
(3×3) Substitute back
$-6=3$

The point
C is
$(3,3)$
(c)

Use a rough sketch to show the given information.

Where l_{1} meets the x-axis, $y=0$:
0
$=3 x-6$
$3 x \quad=6$
x
$=2$
A is the point $(2,0)$
Where l_{2} meets the x-axis, $y=0$:
0

$$
=-\frac{1}{3} x+4
$$

$\frac{1}{3} x$
$=4$
x
$=12$
B is the point $(12,0)$

The perpendicular height, using
AB as the base, is 3
Area of $\Delta \mathrm{ABC} \quad=\frac{1}{2}($ base \times height $)$
$=\frac{1}{2}(10 \times 3)$
$=15$

Although $\angle \mathrm{C}$ is a right-angle, it is easier to use AB as the base.

The distance of C from the x-axis is the same as its y-coordinate.
© Pearson Education Ltd 2008

Solutionbank C1
 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 6

Question:

The line l_{1} has equation $6 x-4 y-5=0$.

The line l_{2} has equation $x+2 y-3=0$.
(a) Find the coordinates of P, the point of intersection of l_{1} and l_{2}.

The line l_{1} crosses the y-axis at the point M and the line l_{2} crosses the y-axis at the point N.
(b) Find the area of $\triangle M N P$.

Solution:

(a)

$6 x-4 y-5$	$=0 \quad$ (i)	Solve the equations
$x+2 y-3$	$=0$	simultaneously
x	$=3-2 y \quad$ equation (ii)	Find x in terms of y from
$6(3-2 y)-4 y-5$	$=0$	Substitute into equation (i)
18-12y-4y-5	$=0$	
18-5	$=12 y+4 y$	
$16 y$	$=13$	
y	$=\frac{13}{16}$	
$x=3-2\left(\frac{13}{16}\right)$	$=3-\frac{26}{16}$	Substitute back into $x=3-2 y$
x	$=1 \frac{3}{8}$	

P is the point ($1 \frac{3}{8}$,
$\frac{13}{16}$)
(b)

Where l_{1} meets the y axis, $x=0$
$0-4 y-5$
$=0$
$=-5$
$=-\frac{5}{4}$
M is the point $\left(0, \frac{-5}{4}\right)$
Where l_{2} meets the y axis, $x=0$:
$0+2 y-3$
$=0$
$2 y$
$=3$
y

$$
=\frac{3}{2}
$$

N is the point $\left(0, \frac{3}{2}\right)$

Use a rough sketch to show the information
$M N=\frac{3}{2}+\frac{5}{4}=\frac{11}{4}$
Use $M N$ as the base and $P Q$ as the perpendicular height.
$P Q \quad=1 \frac{3}{8}=\frac{11}{8}$
Area $\quad=\frac{1}{2}$
of $\triangle M N P$
(base \times height)
$=\frac{1}{2}\left(\frac{11}{4} \times \frac{11}{8}\right)$
$=\frac{121}{64}$
$=1 \frac{57}{64}$
© Pearson Education Ltd 2008

Solutionbank C1
 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 7

Question:

The 5 th term of an arithmetic series is 4 and the 15 th term of the series is 39 .
(a) Find the common difference of the series.
(b) Find the first term of the series.
(c) Find the sum of the first 15 terms of the series.

Solution:

(a)
$n^{\text {th }}$ term $=a+$
$(n-1) d$
$n=5: \quad a+4 d \quad=4$
$n=15: \quad a+14 d \quad=39$
Substitute the given

Subtract (ii)-(i)
$10 d$
$=35$
Solve simultaneously.
$d \quad=3 \frac{1}{2}$
values into the $n^{\text {th }}$ term
(ii) formula.

Common difference is 3
$\frac{1}{2}$
(b)
$a+\left(4 \times 3 \frac{1}{2}\right)=4 \quad$ Substitute back into equation (i).
$a+14=4$
$a \quad=-10$
First term is -10
(c)
S_{n}
$n=15, a$

$$
=-10, d=3 \frac{1}{2}
$$

Substitute the
values
into the
sum formula.
S_{15}

$$
\begin{aligned}
& =\frac{1}{2} \times 15(-20+ \\
& \left.\left(14 \times 3 \frac{1}{2}\right)\right) \\
& =\frac{15}{2}(-20+49) \\
& =\frac{15}{2} \times 29 \\
& =217 \frac{1}{2}
\end{aligned}
$$

© Pearson Education Ltd 2008

Solutionbank C1
 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions
 Exercise A, Question 8

Question:

An athlete prepares for a race by completing a practice run on each of 11 consecutive days. On each day after the first day, he runs farther than he ran on the previous day. The lengths of his 11 practice runs form an arithmetic sequence with first term $a \mathrm{~km}$ and common difference $d \mathrm{~km}$.

He runs 9 km on the $11^{\text {th }}$ day, and he runs a total of 77 km over the 11 day period.

Find the value of a and the value of d.

Solution:

$n^{\text {th }}$ term $=a+$
distance run on the 11th day is the $(n-1) d$
$n=11: \quad a+10 d=9$ term of the arithmetic sequence.
$S_{n}=\frac{1}{2} n(2 a+$
$(n-1) d)$
$S_{n}=77, n=11:$
total distance run is the sum
the arithmetic series.
$\frac{1}{2} \times 11(2 a+10 d)$
$=77$
$\frac{1}{2}(2 a+10 d) \quad=7$
$a+5 d$
$=7$
$a+10 d$
$=9 \quad$ (i)
$a+5 d$
$=7 \quad$ (ii)
Subtract (i)-(ii):
$5 d \quad=2$
$d \quad=\frac{2}{5}$
$a+\left(10 \times \frac{2}{5}\right) \quad=9$
$a+4 \quad=9$
$a \quad=5$
© Pearson Education Ltd 2008

Solutionbank C1

Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 9
Question:
The r th term of an arithmetic series is $(2 r-5)$.
(a) Write down the first three terms of this series.
(b) State the value of the common difference.
(c) Show that $\sum_{r=1}^{n}(2 r-5)=n(n-4)$.

Solution:

(a)

$r=1:$	$2 r-5$	$=-3$
$r=2:$	$2 r-5$	$=-1$
$r=3:$	$2 r-5$	$=1$

First three terms are $-3,-1,1$
(b)

Common difference $d=2$
The terms increase by 2 each time

$$
\left(U_{k+1}=U_{k+2}\right)
$$

(c)

$$
\begin{array}{llc}
n & n \\
r=1 & & \sum_{r=1}^{n} \\
=S_{n} & (2 r-5) & r-5) \text { is just } \\
S_{n} & =\frac{1}{2} n(2 a+(n-1) d) &
\end{array}
$$

$$
a=-3, d=2
$$

to n terms
S_{n}

$$
\begin{aligned}
& =\frac{1}{2} n(-6+2(n-1)) \\
& =\frac{1}{2} n(-6+2 n-2) \\
& =\frac{1}{2} n(2 n-8) \\
& =\frac{1}{2} n 2(n-4) \\
& =n(n-4)
\end{aligned}
$$

Solutionbank C1
 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions
 Exercise A, Question 10

Question:

Ahmed plans to save $£ 250$ in the year 2001, $£ 300$ in 2002 , $£ 350$ in 2003, and so on until the year 2020. His planned savings form an arithmetic sequence with common difference $£ 50$.
(a) Find the amount he plans to save in the year 2011.
(b) Calculate his total planned savings over the 20 year period from 2001 to 2020.

Ben also plans to save money over the same 20 year period. He saves $£ A$ in the year 2001 and his planned yearly savings form an arithmetic sequence with common difference $£ 60$.

Given that Ben's total planned savings over the 20 year period are equal to Ahmed's total planned savings over the same period,
(c) calculate the value of A.

Solution:

(a)

a	$=250$
	$($ Year 2001 $)$
d	$=50$

Write down the values
of a and d for the

Taking 2001 as Year 1
($n=1$) ,

2011 is Year 11

($n=11$).
Year 11 savings:
$a+(n-1) d$
$=250+(11-1)$
50
formula $a+(n-1) d$
$=250+(10 \times 50)$
$=750$

Year 11 savings : £ 750
(b)
$S_{n} \quad=\frac{1}{2} n(2 a+(n-1) d)$
Using $n=20$,
S_{20}

$$
\begin{aligned}
& =\frac{1}{2} \times 20(500+ \\
& (19 \times 50)) \\
& =10(500+950) \\
& =10 \times 1450 \\
& =14500
\end{aligned}
$$

Total savings: £ 14 500
(c)
$\begin{array}{ll}a & =A \quad(\text { Year2001 }) \\ d & =60 \\ S_{20} & =\frac{1}{2} \times 20(2 \mathrm{~A}+(19 \times 60) \quad)\end{array}$
$S_{20} \quad=10(2 \mathrm{~A}+1140)$
$=20 \mathrm{~A}+11400$
$20 \mathrm{~A}+11400=14500$
20A $=14500-11400$
20A $=3100$
A $\quad=155$

The total savings will be the sum of the arithmetic
series.

Solutionbank C1

Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 11

Question:

A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
& a_{1} \quad=3, \\
& a_{n+1}=3 a_{n}-5, \quad n \geq 1 .
\end{aligned}
$$

(a) Find the value of a_{2} and the value of a_{3}.

5
(b) Calculate the value of $\sum a_{r}$.

$$
r=1
$$

Solution:

(a)
Use the given
formula, with
(b)

$$
\begin{aligned}
& a_{n+1} \quad=3 a_{n}-5 \\
& n=1: \quad a_{2}=3 a_{1}-5 \\
& a_{1}=3, \text { so } a_{2}=9-5 \\
& a_{2}=4 \\
& n=2: a_{3} \quad=3 a_{2}-5 \\
& a_{2}=4, \text { so } a_{3}=12-5 \\
& a_{3} \quad=7
\end{aligned}
$$

5
$\sum a_{r} \quad=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$

$$
a=1
$$

$$
n=3: a_{4} \quad=3 a_{3}-5
$$

5
$\sum a_{r}=3+4+7+16+43$ $a=1$

$$
=73
$$

This is not an arithmetic series.

$$
a_{3}=7, \text { so } a_{4}=21-5
$$

The first three terms are 3, 4, 7 .

$$
a_{4} \quad=16
$$

The differences between

$$
n=4: a_{5} \quad=3 a_{4}-5
$$ the terms are not the same.

$$
a_{4}=16, \text { so } a_{5}=48-5
$$ You cannot use a standard formula,

$$
a_{5}
$$

$$
=43
$$ so work out each separate term and then add them together to find the required sum.

Solutionbank C1
 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 12

Question:

A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
& a_{1} \quad=k, \\
& a_{n+1}=3 a_{n}+5, \quad n \geq 1,
\end{aligned}
$$

where k is a positive integer.
(a) Write down an expression for a_{2} in terms of k.
(b) Show that $a_{3}=9 k+20$.

4
(c) (i) Find $\quad \sum \quad a_{r}$ in terms of k.
$r=1$

4

(ii) Show that $\sum a_{r}$ is divisible by 10 . $r=1$

Solution:

(a)

$$
\begin{array}{ll}
a_{n+1} & =3 a_{n}+5 \\
n=1: a_{2} & =3 a_{1}+5 \\
a_{2} & =3 k+5
\end{array}
$$

Use the given
formula with $n=1$
(b)

$$
\begin{aligned}
n=2: a_{3} & =3 a_{2}+5 \\
& =3(3 k+5)+5 \\
& =9 k+15+5 \\
a_{3} & =9 k+20
\end{aligned}
$$

(c)(i)

4

$$
\sum a_{r}=a_{1}+a_{2}+a_{3}+a_{4}
$$

$$
r=1
$$

$$
n=3: a_{4}=3 a_{3}+5
$$

$$
=3(9 k+20)+5
$$

$$
=27 k+65
$$

4
$\sum a_{r} \underset{(27 k+65)}{=k+(3 k+5)}+(9 k+20)+$ $r=1$

$$
=40 k+90
$$

(ii)

4

$$
\sum a_{r}=10(4 k+9)
$$

$$
r=1
$$

There is a factor 10 , so
Give a conclusion.
the sum is divisible by 10 .
© Pearson Education Ltd 2008

Solutionbank C1

Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 13

Question:

A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
& a_{1} \quad=k \\
& a_{n+1}=2 a_{n}-3, \quad n \geq 1
\end{aligned}
$$

(a) Show that $a_{5}=16 k-45$

Given that $a_{5}=19$, find the value of
(b) k

6
(c) $\sum a_{r}$

$$
r=1
$$

Solution:

(a)

$$
\begin{array}{rlr}
a_{n+1} & & =2 a_{n}-3 \\
n=1: & a_{2} & =2 a_{1}-3 \\
& =2 k-3 \\
n=2: & a_{3} & =2 a_{2}-3 \\
& & \\
& & \text { Use the given formula } \\
\text { with } n=1,2,3 \text { and } 4 .
\end{array}
$$

(b)

```
\(a_{5}=19\),
so \(16 k-45=19\)
\(16 k=19+45\)
\(16 k=64\)
\(k=4\)
```

(c)

6

$$
\sum_{r=1} a_{r}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

This
is not an arithmetic series.
$a_{1}=k \quad=4$
$a_{2}=2 k-3=5$
$a_{3}=4 k-9$
$=7$
$a_{4}=8 k-21$
$=11$
$a_{5}=16 k-45$
$=19$
From the original formula,

$$
a_{6}=2 a_{5}-3
$$

$$
=(2 \times 19)-3
$$

$$
=35
$$

You
cannot use a standard formula,
so work out each separate term and then add them together to find the required sum.

6
$\sum a_{r}=4+5+7+11+19+35$
$r=1$

$$
=81
$$

Solutionbank C1
 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 14

Question:

An arithmetic sequence has first term a and common difference d.
(a) Prove that the sum of the first n terms of the series is

$$
\frac{1}{2} n[2 a+(n-1) d]
$$

Sean repays a loan over a period of n months. His monthly repayments form an arithmetic sequence.

He repays $£ 149$ in the first month, $£ 147$ in the second month, $£ 145$ in the third month, and so on. He makes his final repayment in the nth month, where $n>21$.
(b) Find the amount Sean repays in the 21st month.

Over the n months, he repays a total of $£ 5000$.
(c) Form an equation in n, and show that your equation may be written as

$$
n^{2}-150 n+5000=0
$$

(d) Solve the equation in part (c).
(e) State, with a reason, which of the solutions to the equation in part (c) is not a sensible solution to the repayment problem.

Solution:

(a)

$$
\begin{aligned}
& =a+(a+d)+(a+2 d)+\ldots . .+\left(a+\begin{array}{c}
\text { You need to know this } \\
(n-1) d) \\
\text { proof. Make }
\end{array}\right.
\end{aligned}
$$

Reversing the sum : sure that you understand it, and do
S_{n}

$$
\begin{aligned}
& =(a+(n-1) d)+\ldots .+(a+2 d)+ \\
& (a+d)+a
\end{aligned}
$$

not miss out any of the steps.
Adding these
two :
When you add, each pair of terms
$2 S_{n}$
$=(2 a+(n-1) d)+\ldots \ldots+(2 a+$
$(n-1) d)$
$2 S_{n}$

$$
=n(2 a+(n-1) d)
$$

adds up to $2 a+(n-1)$ d,
and there are n pairs of terms.
$S_{n} \quad=\frac{1}{2} n(2 a+(n-1) d)$
(b)

| a | $=149$
 month $)$ | (First |
| :--- | :--- | :--- |\quad| Write down the values of |
| :--- |
| d |

21st month:
$a+(n-1) d$

$$
\begin{aligned}
& =149+ \\
& (20 \times-2) \\
& =149-40 \\
& =109
\end{aligned}
$$

Use the term formula

$$
a+(n-1) d
$$

He repays $£ 109$ in the 21st month
(c)
$S_{n} \quad=\frac{1}{2} n(2 a+(n-1) \quad$ sum of \quad The total he repays will be the

$$
=\frac{1}{2} n(298-2
$$

$$
(n-1))
$$

$$
=\frac{1}{2} n(298-2 n+2)
$$

$$
=\frac{1}{2} n(300-2 n)
$$

$$
=\frac{1}{2} n 2(150-n)
$$

$$
=n(150-n)
$$

$n(150-n) \quad=5000 \quad$ Equate S_{n} to 5000
$150 n-n^{2}=5000$
$n^{2}-150 n+5000=0$
(d)

$$
\begin{array}{ll}
(n-50) \\
(n-100) & =0
\end{array}
$$

$n=50$ or $n=100$ quadratic formula would be
the arithmetic series.

The try to factorise the quadratic.

Always
Alway awkward here with such large numbers.
(e)
$n=100$ is not sensible .
For example, his repayment
in month $100 \quad(n=100)$
would be $a+(n-1) d$
Check back in the
context of

$$
\begin{aligned}
& =149+(99 \times-2) \\
& =149-198 \\
& =-49
\end{aligned}
$$

the
the problem to see if solution is sensible.

A negative repayment is not sensible.
© Pearson Education Ltd 2008

Solutionbank C1

Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 15

Question:

A sequence is given by

$$
\begin{aligned}
& a_{1} \quad=2 \\
& a_{n+1}=a_{n}^{2}-k a_{n}, \quad n \geq 1,
\end{aligned}
$$

where k is a constant.
(a) Show that $a_{3}=6 k^{2}-20 k+16$

Given that $a_{3}=2$,
(b) find the possible values of k.

For the larger of the possible values of k, find the value of
(c) a_{2}
(d) a_{5}
(e) a_{100}

Solution:
(a)

$$
n=1: \quad a_{2}=a_{1}^{2}-k a_{1} \quad \text { Use the given formula }
$$

(b)
$a_{3}=2$:
$6 k^{2}-20 k+16=2$
$6 k^{2}-20 k+14=0$

Divide
by 2 to make solution easier

Try to
$3 k^{2}-10 k+7=0$
$\begin{aligned} & (3 k-7) \\ & (k-1)\end{aligned}=0$ with $n=1$ and 2 .
$k=$
$\frac{7}{3}$ or $k=1 \quad$ using the quadratic formula. than

$$
\begin{aligned}
& a_{n+1} \quad=a_{n}^{2}-k a_{n} \\
& =4-2 k \\
& n=2: \quad a_{3}=a_{2}^{2}-k a_{2} \\
& =(4-2 k)^{2}-k(4-2 k) \\
& =16-16 k+4 k^{2}-4 k+2 k^{2} \\
& a_{3}=6 k^{2}-20 k+16
\end{aligned}
$$

(c)

The larger k value is $\frac{7}{3}$

$$
\begin{aligned}
a_{2} & =4-2 k=4-\left(2 \times \frac{7}{3}\right) \\
& =4-\frac{14}{3}=-\frac{2}{3}
\end{aligned}
$$

(d)

$$
\begin{array}{ll}
\begin{aligned}
a_{n+1} & =a_{n}^{2}-\frac{7}{3} a_{n} \\
n=3: a_{4} & =a_{3}^{2}-\frac{7}{3} a_{3} \\
\text { But } a_{3} & =2 \text { is given, so } \\
& =2^{2}-\left(\frac{7}{3} \times 2\right) \\
a_{4} & =4-\frac{14}{3}=\frac{-2}{3} \\
n=4: \quad a_{5} & =a_{4}^{2}-\frac{7}{3} a_{4} \\
& =\left(\frac{-2}{3}\right)^{2}-\left(\frac{7}{3} \times \frac{-2}{3}\right) \\
& =\frac{4}{9}+\frac{14}{9}=\frac{18}{9} \\
& =2
\end{aligned} \\
\begin{aligned}
a_{5} &
\end{aligned}
\end{array}
$$

(e)

$$
\begin{array}{ll}
a_{2} & =\frac{-2}{3}, a_{3}=2 \\
a_{4} & =\frac{-2}{3}, a_{5}=2
\end{array}
$$

Use the formula with $k=\frac{7}{3}$, for $n=3$ and 4 .

For even values
of $n, a_{n}=\frac{-2}{3}$. $\frac{-2}{3}$ and 2.

So $a_{100}=\frac{-2}{3}$
sequence is
the values

Notice that the "oscillating" between

If n is even, $a_{n}=$

If n is odd, $a_{n}=2$.

Solutionbank C1

Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 16
Question:
Given that

$$
y=4 x^{3}-1+2 x^{\frac{1}{2}}, x>0
$$

find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

Solution:

y	$=4 x^{3}-1+2 x^{\frac{1}{2}}$	$\frac{d y}{d x}=n x^{n-1}$	For $y=x^{n}$,
$\frac{d y}{d x}$	$=\left(4 \times 3 x^{2}\right)+\left(2 \times \frac{1}{2} x-\frac{1}{2}\right)$	the constant	Differentiating
		zero.	- 1 gives
$\frac{d y}{d x}$	$=12 x^{2}+x^{-\frac{1}{2}}$	write down an	It is better to
		version of the answer first	unsimplified
		make a mistake	(in case you
		simplifying).	when
(
Or: $\frac{d y}{d x}=12 x^{2}+$			
$\frac{1}{x^{\frac{1}{2}}}$			
	is not necessary to change your	It	
Or: $\frac{d y}{d x}=12 x^{2}+$			
$\frac{1}{\sqrt{x}}$			
		one of these forms.	answer into

Solutionbank C1
 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 17

Question:

Given that $y=2 x^{2}-\frac{6}{x^{3}}, x \neq 0$,
(a) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) find $\int y \mathrm{~d} x$.

Solution:

(a)

$$
y \quad=2 x^{2}-\frac{6}{x^{3}} \quad \frac{1}{x^{n}}=x^{-n}
$$

$$
=2 x^{2}-6 x^{-3}
$$

$$
\frac{d y}{d x} \quad=\left(2 \times 2 x^{1}\right)-\left(6 \times-3 x^{-4}\right) \quad \frac{d y}{d x}=n x^{n-1}
$$

$$
\begin{array}{lll}
\frac{d y}{d x}=4 x+18 x-4 & \text { an unsimplified version } & \text { Write down } \\
& \text { first } & \text { of the answer }
\end{array}
$$

(Or:
$\frac{d y}{d x}=4 x+\quad$ It $\frac{18}{x^{4}}$)
is not necessary to change first.

For $y=x^{n}$,
your answer
into this form.
(b)

$$
\begin{aligned}
& \int\left(2 x^{2}-6 x^{-3}\right) d x \\
& =\frac{2 x^{3}}{3}-\frac{6 x^{-2}}{-2}+C \quad \text { constant } \\
& =\frac{2 x^{3}}{3}+3 x^{-2}+C \quad \text { version }
\end{aligned}
$$

(Or: $\frac{2 x^{3}}{3}+$ $\left.\frac{3}{x^{2}}+C\right)$

Use $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$
Do not forget to include the of integration, C.
Write down an unsimplified
of the answer first

It is not necessary to change
your answer into this form.

Solutionbank C1
 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 18

Question:

Given that $y=3 x^{2}+4 \sqrt{x}, x>0$, find
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$,
(c) $\int y \mathrm{~d} x$.

Solution:

(a)
y
$\frac{d y}{d x}$
$\frac{d y}{d x}$
$=3 x^{2}+4 \sqrt{x}$
$=3 x^{2}+4 x^{\frac{1}{2}}$
$=\left(3 \times 2 x^{1}\right)+(4 \times$
$\left.\frac{1}{2} x^{-\frac{1}{2}}\right) \quad \frac{d y}{d x}=n x^{n-1}$
$=6 x+2 x-\frac{1}{2}$
an
version
first.
(

$$
\frac{d y}{d x}=6 x+
$$

Or:

$$
\frac{2}{x^{\frac{1}{2}}}
$$

It i)s not necessary to change

Or:
$\frac{d y}{d x}=6 x+$ $\frac{2}{\sqrt{x}}$
(b)
$\frac{d y}{d x} \quad=6 x+2 x^{\frac{-1}{2}}$
$\frac{d^{2} y}{d x^{2}} \quad=6+\left(2 \times \frac{-1}{2} x^{\frac{-3}{2}}\right)$

$$
=6-x^{\frac{-3}{2}}
$$

(
Or:
$\frac{d^{2} y}{d x^{2}}=6-$
$\frac{1}{x^{\frac{3}{2}}}$
i) not necessary to change your

Or:
$\frac{d^{2} y}{d x^{2}}=6-$
$\frac{1}{x \sqrt{x}}$
It again
answer into one of these forms.

x

$\frac{3}{2}=x^{1} \times x^{\frac{1}{2}}=x \sqrt{x}$
(c)

$$
\begin{array}{ll}
\int\left(3 x^{2}+4 x^{\frac{1}{2}}\right) d x & \text { Use } \int x^{n} d x=\frac{x^{n+1}}{n+1}+C \text { Do } \\
=\frac{3 x^{3}}{3}+\frac{4 x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}+C & \text { not forget to include the constant } \\
=x^{3}+4\left(\frac{2}{3}\right) x^{\frac{3}{2}}+C & \text { of integration, C } \\
=x^{3}+\frac{8}{3} x^{\frac{3}{2}}+C & \text { Write down an unsimplified version } \\
\left(\text { Or: } x^{3}+\frac{8}{3} x(\sqrt{x}+C)\right. & \text { of the answer first. } \\
& \text { It is not necessary to change your } \\
& \text { answer into this form. }
\end{array}
$$

Solutionbank C1

Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 19
Question:
(i) Given that $y=5 x^{3}+7 x+3$, find
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(ii) Find $\int\left(1+3 \sqrt{x}-\frac{1}{x^{2}}\right) d x$.

Solution:
(i)
$y=5 x^{3}+7 x+3$
(a)

$$
\frac{d y}{d x}=\left(5 \times 3 x^{2}\right)+\left(7 \times 1 x^{0}\right) \quad \frac{d y}{d x}=n x^{n-1} . \quad \text { For } y=x^{n},
$$

Differentiating the constant
3 gives zero.

$$
\frac{d y}{d x}=15 x^{2}+7
$$

Differentiating $K x$ gives K.
(b)

$$
\begin{array}{rlr}
\frac{d y}{d x} & =15 x^{2}+7 & \text { Differentiate again } \\
\frac{d^{2} y}{d x^{2}} & =\left(15 \times 2 x^{1}\right) & \\
& =30 x &
\end{array}
$$

(ii)
$\int\left(1+3 \sqrt{x}-\frac{1}{x^{2}}\right) d x$
$=\int\left(1+3 x^{\frac{1}{2}}-x^{-2}\right) d x$
include the
integration C
(Or: $\quad x+2 x \sqrt{x}+\frac{1}{x}+C$)
© Pearson Education Ltd 2008
$\frac{x^{n+1}}{n+1}+C$.

Do not forget to constant of五

$$
\begin{aligned}
& =x+\frac{3 x \frac{3}{2}}{\left(\frac{3}{2}\right)}-\frac{x^{-1}}{(-1)}+C \\
& =x+\left(3 \times \frac{2}{3} x^{\frac{3}{2}}\right)+x^{-1}+C
\end{aligned}
$$

$$
=x+2 x^{\frac{3}{2}}+x^{-1}+C \quad \text { change }
$$

form.

$$
\frac{1}{x^{n}}=x^{-n} \quad \text { Use } \sqrt{x}=x^{\frac{1}{2}} \text { and }
$$

Use $\int x^{n} d x=$ your answer into this

Solutionbank C1
 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 20

Question:

The curve C has equation $y=4 x+3 x^{\frac{3}{2}}-2 x^{2}, \quad x>0$.
(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Show that the point $P(4,8)$ lies on C.
(c) Show that an equation of the normal to C at the point P is

$$
3 y=x+20 .
$$

The normal to C at P cuts the x-axis at the point Q.
(d) Find the length $P Q$, giving your answer in a simplified surd form.

Solution:

(a)
$y=4 x+3 x$
$\frac{3}{2}-2 x^{2}$
$\frac{d y}{d x}$

$$
=\left(4 \times 1 x^{0}\right)+\left(3 \times \frac{3}{2} x^{\frac{1}{2}}\right)-\quad \text { For } y=x^{n}
$$

$$
\frac{d y}{d x}=n x^{n-1}
$$

$\frac{d y}{d x} \quad=4+\frac{9}{2} x^{\frac{1}{2}}-4 x$
(b)

For $x=4$,
y

$$
\begin{aligned}
& =(4 \times 4)+\left(3 \times 4^{\frac{3}{2}}\right)- \\
& \left(2 \times 4^{2}\right) \\
& =16+(3 \times 4 \times 2)-32 \\
& =16+24-32=8
\end{aligned}
$$

$$
x^{\frac{3}{2}}=x^{1} \times x
$$

So P (4, 8) lies on C
(c)

The value
For $x=4, \quad$ of $\frac{d y}{d x}$

$$
\begin{aligned}
\frac{d y}{d x} & =4+\left(\frac{9}{2} \times 4^{\frac{1}{2}}\right)-(4 \times 4) \\
& =4+\left(\frac{9}{2} \times 2\right)-16 \\
& =4+9-16=-3
\end{aligned}
$$

The gradient of the normal is perpendicular to the at P is $\frac{1}{3} \quad$ the gradient is $-\frac{1}{m}$
Equation of the normal :

$y-8$	$=\frac{1}{3}(x-4)$
$y-8$	$=\frac{x}{3}-\frac{4}{3}$
$3 y-24$	$=x-4$
$3 y$	$=x+20$

(d)

$$
\begin{array}{ll}
y=0: & 0=x+20 \\
& x=-20
\end{array}
$$

The normal
tangent, so
is the gradient of the tangent.

Use $y-y_{1}=m$

Multiply by 3

Use $y=0$ to find where the normal cuts

The distance between two

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+}
$$

To simplify the surd,
find a factor which is an exact square (here $64=8^{2}$)

Solutionbank C1

Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions
Exercise A, Question 21

Question:

The curve C has equation $y=4 x^{2}+\frac{5-x}{x}, x \neq 0$. The point P on C has x-coordinate 1 .
(a) Show that the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at P is 3 .
(b) Find an equation of the tangent to C at P.

This tangent meets the x-axis at the point $(k, 0)$.
(c) Find the value of k.

Solution:

(a)

$$
\begin{array}{lll}
= & 4 x^{2}+\frac{5-x}{x} & \text { Divide } 5-x \text { by } x \\
=4 x^{2}+5 x^{-1}-1 & \text { For } y=x^{n}, \frac{d y}{d x}=n x^{n-1}
\end{array}
$$

$$
\frac{d y}{d x} \quad=\left(4 \times 2 x^{1}\right)+\left(5 x-1 x^{-2}\right)
$$

$$
\text { constant - } 1 \text { gives zero }
$$

$$
\frac{d y}{d x} \quad=8 x-5 x-2
$$

At $P, x=1$, so

$$
\begin{aligned}
\frac{d y}{d x} & =(8 \times 1)-\left(5 \times 1^{-2}\right) \\
& =8-5=3
\end{aligned}
$$

Differentiating the
$1^{-2}=\frac{1}{1^{2}}=\frac{1}{1}=1$
(b)

$$
\begin{array}{ll}
\text { At } x=1, \frac{d y}{d x}=3 & \\
& \text { tangent } \\
\text { At } x=1, & y=\left(4 \times 1^{2}\right)+\frac{5-1}{1} \\
& y=4+4=8
\end{array}
$$

Equation of the
tangent :
$y-8$
$=3(x-1)$

$$
y \quad=3 x+5
$$

(c)
$y=0: 0 \quad=3 x+5 \quad$ Use $y=0$ to find
$3 x \quad=-5$
$x=-\frac{5}{3}$
So K $=-\frac{5}{3}$
© Pearson Education Ltd 2008
where the tangent
meets the x-axis

The value of $\frac{d y}{d x}$ is the gradient of the

Solutionbank C1
 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 22

Question:

The curve C has equation $y=\frac{1}{3} x^{3}-4 x^{2}+8 x+3$.

The point P has coordinates $(3,0)$.
(a) Show that P lies on C.
(b) Find the equation of the tangent to C at P, giving your answer in the form $y=m x+c$, where m and c are constants.

Another point Q also lies on C. The tangent to C at Q is parallel to the tangent to C at P.
(c) Find the coordinates of Q.

Solution:

(a)
y

$$
=\frac{1}{3} x^{3}-4 x^{2}+8 x+3
$$

At $x=3$,
y

$$
\begin{aligned}
& =\left(\frac{1}{3} \times 3^{3}\right)-\left(4 \times 3^{2}\right)+(8 \times 3)+3 \\
& =9-36+24+3 \\
& =0
\end{aligned}
$$

So P (3, 0) lies on C
(b)

$$
\begin{array}{ll}
\frac{d y}{d x} & =\left(\frac{1}{3} \times 3 x^{2}\right)-\left(4 \times 2 x^{1}\right)+ \\
\left(8 \times 1 x^{0}\right) & \frac{d y}{d x}=n x^{n-1}
\end{array}
$$

Differentiating the
constant 3 gives zero.

$$
\begin{aligned}
& =x^{2}-8 x+8 \\
\text { At } x & =3,
\end{aligned}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =3^{2}-(8 \times 3)+8 \\
& =9-24+8=-7
\end{aligned}
$$

Equation of the tangent :
$y-0$
$=-7(x-3)$
Use $y-y_{1}=m$
$y=-7 x+21$
This is in the required form $y=m x+c$
(c)

At $Q, \frac{d y}{d x} \quad=-7 \quad$ If the tangents are
parallel, they have the same
gradient.
$\begin{array}{ll}x^{2}-8 x+8 & =-7 \\ x^{2}-8 x+15 & =0 \\ (x-3)(x-5) & =0\end{array}$
$x=3$ or $x=5$
$x=3$ at the point P
For $Q, x=5$
y

$$
\begin{array}{ll}
=\left(\frac{1}{3} \times 5^{3}\right)-\left(4 \times 5^{2}\right)+ & \text { Substitute } x=5 \\
(8 \times 5)+3 & \\
=\frac{125}{3}-100+40+3 & \text { of C }
\end{array}
$$

Q is the point (5, -15
$\frac{1}{3}$)

Solutionbank C1
 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 23

Question:

$$
\mathrm{f}(x)=\frac{(2 x+1)(x+4)}{\sqrt{x}}, x>0
$$

(a) Show that $\mathrm{f}(x)$ can be written in the form $P x^{\frac{3}{2}}+Q x^{\frac{1}{2}}+R x^{-\frac{1}{2}}$, stating the values of the constants P, Q and R.
(b) Find $f^{\prime}(x)$.
(c) Show that the tangent to the curve with equation $y=\mathrm{f}(x)$ at the point where $x=1$ is parallel to the line with equation $2 y=11 x+3$.

Solution:

(a)

$$
f(x) \quad=\frac{(2 x+1)(x+4)}{\sqrt{ } x}
$$

$$
=\frac{2 x^{2}+9 x+4}{\sqrt{ } x} \quad \text { Divide each term by }
$$

$$
x
$$

$$
\frac{1}{2}, \text { remembering }
$$

$$
=2 x^{\frac{3}{2}}+9 x^{\frac{1}{2}}+4 x^{\frac{-1}{2}} . \quad \text { that } x^{m} \div x^{n}=x^{m-n}
$$

$$
P=2, \quad Q=9, \quad R=4
$$

(b)
$=\left(2 \times \frac{3}{2} x^{\frac{1}{2}}\right)+\left(9 \times \frac{1}{2} x^{\frac{-1}{2}}\right)+(4 \times$
$\left.f^{\prime}(x) \frac{-1}{2} x^{\frac{-3}{2}}\right)$
$f^{\prime}(x)=3 x^{\frac{1}{2}}+\frac{9}{2} x^{\frac{-1}{2}}-2 x^{\frac{-3}{2}}$
(c)

At $x=1$,
$f^{\prime}(1)$

$$
=\left(3 \times 1^{\frac{1}{2}}\right)+\left(\frac{9}{2} \times 1^{\frac{-1}{2}}\right)-
$$

($2 \times 1 \frac{-3}{2}$) of the tangent at $x=1$

$$
=3+\frac{9}{2}-2=\frac{11}{2}
$$

$1^{n}=1$ for any n.
The line $2 y$
$=11 x+3$ is
y
$=\frac{11}{2} x+\frac{3}{2}$

Compare
with $y=m x+c$

The gradient is $\frac{11}{2}$
So the tangent to the curve where
$x=1$ is parallel to this Give a conclusion , line,
since the gradients are equal.
© Pearson Education Ltd 2008

Solutionbank C1
 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 24

Question:

The curve C with equation $y=\mathrm{f}(x)$ passes through the point $(3,5)$.

Given that $\mathrm{f}^{\prime}(x)=x^{2}+4 x-3$, find $\mathrm{f}(x)$.

Solution:

$f^{\prime}(x)$
$=x^{2}+4 x-3$
$f(x)$

$$
\begin{aligned}
& =\frac{x^{3}}{3}+\frac{4 x^{2}}{2}-3 x+C \\
& =\frac{x^{3}}{3}+2 x^{2}-3 x+C
\end{aligned}
$$

constant of
integration C .
When $x=3, f(x)$
$=5$, so
$\frac{3^{3}}{3}+\left(2 \times 3^{2}\right)-$
$(3 \times 3)+C=5$
$9+18-9+C=5$
so $f(3)=5$.
C
$f(x)$
passes $(3,5)$,

The curve
through
$=-13$
$=\frac{x^{3}}{3}+2 x^{2}-3 x-13$

Solutionbank C1
 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 25

Question:

The curve with equation $y=\mathrm{f}(x)$ passes through the point $(1,6)$. Given that

$$
\mathrm{f}^{\prime}\left\{x \left\lvert\,=3+\frac{5 x^{2}+2}{x^{\frac{1}{2}}}\right., x>0,\right.
$$

find $\mathrm{f}(x)$ and simplify your answer.

Solution:

$f^{\prime}(x)$
$f(x)$
$=3+\frac{5 x^{2}+2}{x^{\frac{1}{2}}}$
Divide $5 x^{2}+2$ by $x^{\frac{1}{2}}$,
remembering that
$x^{m} \div x^{n}=x^{m-n}$
$=3+5 x^{\frac{3}{2}}+2 x^{-\frac{1}{2}} \quad$ To find $f(x)$ from
$f^{\prime}(x)$, integrate.
$=3 x+\frac{5 x^{\frac{5}{2}}}{\left(\frac{5}{2}\right)}+\frac{2 x^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}+C \quad \begin{gathered}\text { Use } \int x^{n} d x= \\ \frac{x^{n+1}}{n+1}+C .\end{gathered}$
$=3 x+\left(5 \times \frac{2}{5} x^{\frac{5}{2}}\right)+(2 \times$
$\left.\frac{2}{1} x^{\frac{1}{2}}\right)+C$
$=3 x+2 x^{\frac{5}{2}}+4 x^{\frac{1}{2}}+C$
the constant of integration C.

Do not forget to include

When $x=1, f(x)=6$, so The curve passes

$(3 \times 1)+\left(2 \times 1^{\frac{5}{2}}\right)+$	through $(1,6)$,
$\left(4 \times 1^{\frac{1}{2}}\right)+C=6$	so $f(1)=6$
$3+2+4+C$	$=6$
C	$=-3$

© Pearson Education Ltd 2008

Solutionbank C1
 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions
Exercise A, Question 26
Question:
For the curve C with equation $y=\mathrm{f}(x)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{3}+2 x-7
$$

(a) Find $\frac{d^{2} y}{d x^{2}}$
(b) Show that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \geq 2$ for all values of x.

Given that the point $P(2,4)$ lies on C,
(c) find y in terms of x,
(d) find an equation for the normal to C at P in the form $a x+b y+c=0$, where a, b and c are integers.

Solution:

(a)
$\frac{d y}{d x}=x^{3}+2 x-7$ Differentiate to find
$\frac{d^{2} y}{d x^{2}}=3 x^{2}+2$ the second derivative
(b)
$x^{2} \geq 0$ for any (real) x.
So $3 x^{2} \geq 0$
The square of a

So $3 x^{2}+2 \geq 2$ real number cannot be negative .
So $\frac{d^{2} y}{d x^{2}} \geq 2$ for all values of x.
Give a conclusion .
(c)

$\frac{d y}{d x}$	$=x^{3}+2 x-7$		Integrate $\frac{d y}{d x}$ to
of x. find y in terms			
y	$=\frac{x^{4}}{4}+\frac{2 x^{2}}{2}-7 x+C$	include	Do not forget to
	$=\frac{x^{4}}{4}+x^{2}-7 x+C$	integration C .	the constant of

When $x=2, y=4$, so
Use the fact that

4	$=\frac{2^{4}}{4}+2^{2}-(7 \times 2)+C$	the curve.	$P(2,4)$ lies on
4	$=4+4-14+C$		
C	$=+10$		
y	$=\frac{x^{4}}{4}+x^{2}+7 x+10$		

(d)

For x

$$
=2
$$

$$
\begin{aligned}
\frac{d y}{d x} & =2^{3}+(2 \times 2)-7 \\
& =8+4-7=5
\end{aligned}
$$

$\frac{d y}{d x}$

 is the gradient of the tangent .The gradient of the normal
at P is $\frac{-1}{5}$
The normal is
perpendicular to the tangent,
so the gradient is $-\frac{1}{m}$
Equation of the
normal :

$$
\begin{array}{ll}
y-4 & =\frac{-1}{5}(x-2) \\
y-4 & =\frac{-x}{5}+\frac{2}{5} \\
5 y-20 & =-x+2
\end{array}
$$

$$
x+5 y-22=0 \quad \text { This is in the required form }
$$

$$
a x+b y+c=0, \text { where } a
$$

$$
b \text { and } c \text { are integers. }
$$

Solutionbank C1

Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 27
Question:
For the curve C with equation $y=\mathrm{f}(x)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1-x^{2}}{x^{4}}
$$

Given that C passes through the point $\left(\frac{1}{2}, \frac{2}{3}\right)$,
(a) find y in terms of x.
(b) find the coordinates of the point on Cat which $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.

Solution:

(a)

$$
\begin{array}{rlr}
\frac{d y}{d x} & =\frac{1-x^{2}}{x^{4}} & \text { Divide } 1-x^{2} \text { by } x^{4} \\
& =x^{-4}-x^{-2} & \\
y & =\frac{x^{-3}}{-3}-\frac{x^{-1}}{-1}+C & \text { find } y \text { in terms } \\
& =\frac{-x^{-3}}{3}+x^{-1}+C & \text { to include }
\end{array}
$$ the

constant of integration C.
$y=\frac{-1}{3 x^{3}}+\frac{1}{x}+C$
will make it easier
calculate values
at
the next stage .
When $x=$
$\frac{1}{2}, \quad y=$
$\frac{2}{3}$, so
$\frac{2}{3} \quad=-\frac{8}{3}+2+C$
$C \quad=\frac{2}{3}+\frac{8}{3}-2=\frac{4}{3}$
$y \quad=\frac{-1}{3 x^{3}}+\frac{1}{x}+\frac{4}{3}$
(b)

Use the fact that
($\frac{1}{2}, \frac{2}{3}$) lies on the curve .

$\frac{1-x^{2}}{x^{4}}$	$=0$	equal
	is	If a fraction
$1-x^{2}$	$=0$	must be zero.
x^{2}	$=1$	
$x=1$ or $x=-1$		numerator
$x=1: y$	$=\frac{-1}{3}+1+\frac{4}{3}$	
y	$=2$	
$x=-1: y$	$=\frac{1}{3}-1+\frac{4}{3}$	
y	$=\frac{2}{3}$	

The points are (1, 2)
and $\left(-1, \frac{2}{3}\right)$

Solutionbank C1
 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 28

Question:

The curve C with equation $y=\mathrm{f}(x)$ passes through the point $(5,65)$.
Given that $\mathrm{f}^{\prime}(x)=6 x^{2}-10 x-12$,
(a) use integration to find $\mathrm{f}(x)$.
(b) Hence show that $\mathrm{f}(x)=x(2 x+3)(x-4)$.
(c) Sketch C, showing the coordinates of the points where C crosses the x-axis.

Solution:

(a)
$f^{\prime}(x)$

$$
=6 x^{2}-10 x-12
$$

$f(x)$

$$
=\frac{6 x^{3}}{3}-\frac{10 x^{2}}{2}-12 x+\mathrm{C}
$$

When $x=5, y=65$, so
include the constant of integration C.

65

$$
=\frac{6 \times 125}{3}-\frac{10 \times 25}{2}-60+C
$$

$$
=250-125-60+C
$$

C $=65+125+60-250$
C

$$
=0
$$

$$
f(x)
$$

$$
=2 x^{3}-5 x^{2}-12 x
$$

(b)
$f(x)=x\left(2 x^{2}-5 x-12\right)$
$f(x)=x(2 x+3)(x-4)$
(c)

Curve meets x-axis where $y=0$
$x(2 x+3)(x-4)=0$
$x=0, x=-\frac{3}{2}, x=4$
When $x \rightarrow \infty, y \rightarrow \infty$
When $x \rightarrow-\infty, y \rightarrow-\infty$

Put $y=0$ and
solve for x
Check what happens
to y for large
positive and negative values of x.

Crosses x-axis at $\left(\frac{-3}{2}, 0\right),(0,0),(4,0)$
© Pearson Education Ltd 2008

Solutionbank C1

Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 29
Question:

The curve C has equation $y=x^{2}(x-6)+\frac{4}{x}, x>0$.

The points P and Q lie on C and have x-coordinates 1 and 2 respectively.
(a) Show that the length of $P Q$ is $\sqrt{170}$.
(b) Show that the tangents to C at P and Q are parallel.
(c) Find an equation for the normal to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Solution:

(a)
$y=x^{2}(x-6)+\frac{4}{x}$
At $\mathrm{P}, x=1$,
$y \quad=1(1-6)+\frac{4}{1}=-1$
P is $(1,-1)$
At $\mathrm{Q}, x=2$,
y
Q is $(2,-14)$
$P Q=\sqrt{(2-1)^{2}+(-14-(-1))^{2}}$
$=\sqrt{ }\left(1^{2}+(-13)^{2}\right)$
$=\sqrt{ }(1+169)=\sqrt{ } 170$

The distance between
two points is
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
(b)
y

$$
\begin{aligned}
& =x^{3}-6 x^{2}+4 x^{-1} \\
& =3 x^{2}-\left(6 \times 2 x^{\prime}\right) \\
& =3 x^{2}-12 x-4 x^{-2}
\end{aligned}
$$

$$
\frac{d y}{d x} \quad=3 x^{2}-\left(6 \times 2 x^{\prime}\right)+\left(4 x-1 x^{-2}\right)
$$

At $x=1$, The value of $\frac{d y}{d x}$
$\frac{d y}{d x}$
$=3-12-4=-13$
is the gradient of

At $x=2$,
$\frac{d y}{d x}$

$$
\begin{aligned}
& =(3 \times 4)-(12 \times 2)-\left(4 \times 2^{-2}\right) \\
& =12-24-\frac{4}{4}=-13
\end{aligned}
$$

At P and also at Q the
Give a conclusion gradient is -13 , so the tangents are parallel (equal gradients).
(c)

The gradient of the normal is perpendicular to the at P is -
$\frac{1}{-13}=\frac{1}{13} \quad$ the gradient is $-\frac{1}{m}$
Equation of
the normal:
$y-(-1)=\frac{1}{13}(x-1)$
$y+1=\frac{x}{13}-\frac{1}{13}$
$13 y+13=x-1$
$x-13 y-14=0$
integers.

The normal
tangent, so

Use $y-y_{1}=m\left(x-x_{1}\right)$
Multiply by 13
This is in the required form $a x+b y+c=0$, where a,

Solutionbank C1
 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions

Exercise A, Question 30

Question:

(a) Factorise completely $x^{3}-7 x^{2}+12 x$.
(b) Sketch the graph of $y=x^{3}-7 x^{2}+12 x$, showing the coordinates of the points at which the graph crosses the x-axis.

The graph of $y=x^{3}-7 x^{2}+12 x$ crosses the positive x-axis at the points A and B.

The tangents to the graph at A and B meet at the point P.
(c) Find the coordinates of P.

Solution:

(a)

$$
\begin{aligned}
x^{3}-7 x^{2}+12 x & \\
& =x\left(x^{2}-7 x+12\right) \\
& =x(x-3)(x-4)
\end{aligned}
$$

(b)

Curve meets x-axis where $y=0$.
$x(x-3)(x-4)=0$
$x=0, x=3, x=4$
When $x \rightarrow \infty, y \rightarrow \infty$
When $x \rightarrow-\infty, y \rightarrow-\infty$

Put $y=0$ and
solve for x.
Check what happens to
y for large positive and negative values of x

Crosses x-axis at $(0,0),(3,0),(4,0)$
(c)
A and B are
(3, 0)
and
$(4,0)$
$\frac{d y}{d x}=3 x^{2}-14 x+12$
At $x=3$,
$(A) \quad$ value of $\frac{d y}{d x}$
$\frac{d y}{d x} \quad=27-42+12=-3$
of the tangent.
is the gradient

At $x=4$
(B)
$\frac{d y}{d x} \quad=48-56+12=4$
Tangent at A:
$y-0=-3(x-3)$

$$
\begin{equation*}
\left(x-x_{1}\right) \tag{i}
\end{equation*}
$$

$y \quad=-3 x+9$
Tangent at B:
$y-0=4(x-4)$
$y=4 x-16$
Subtract (ii) -
(i) :
$\begin{array}{ll}0 & =7 x-25 \\ x & =\frac{25}{7}\end{array}$

